Web Analytics
Privacy Policy Cookie Policy Terms and Conditions Simmetria (matematica) - Wikipedia

Simmetria (matematica)

Da Wikipedia, l'enciclopedia libera.

simmetrie assiali in figure geometriche piane.
Ingrandisci
simmetrie assiali in figure geometriche piane.

In matematica, una simmetria è generalmente una operazione che muove o trasforma un oggetto lasciandone però inalterato l'aspetto. L'oggetto può essere ad esempio una figura geometrica o un'equazione.

Esempi di trasformazioni sono le isometrie di figure geometriche come i poligoni o i poliedri (come le riflessioni o rotazioni) oppure le permutazioni delle variabili in una formula o equazione.

Generalmente, le simmetrie di un oggetto formano un gruppo, detto gruppo delle simmetrie.

Indice

[modifica] Simmetria in geometria

Una simmetria di una figura geometrica è una trasformazione che lascia la figura invariata. Una tale definizione dipende da cosa si intende per "figura geometrica" e "trasformazione"[1].

In ogni caso, le "trasformazioni" formano un gruppo con l'operazione di composizione, e le simmetrie formano un sottogruppo, detto gruppo delle simmetrie della figura. In altre parole, si verificano i fatti seguenti:

  • fra le simmetrie di un oggetto, c'è sempre l'identità: è la trasformazione che lascia tutti i punti fermi;
  • la composizione di due simmetrie è sempre una simmetria;
  • una simmetria ha sempre una inversa, che è ancora una simmetria.

[modifica] Punti fissi

I punti fissi sono i punti della figura geometrica che restano fermi in una simmetria. Se esiste un solo punto fisso (come accade, ad esempio, in una rotazione nel piano), questo è detto centro della simmetria, mentre se i punti fissi formano una retta (come in una riflessione nel piano, o una rotazione nello spazio) questa è l'asse della simmetria. Alcune trasformazioni (ad esempio le traslazioni) non hanno punti fissi.

[modifica] Geometria euclidea

Nella geometria euclidea, una figura geometrica è un qualsiasi sottoinsieme dello spazio euclideo (ad esempio, del piano o dello spazio tridimensionale). Sono quindi figure geometriche ad esempio i poligoni o le coniche nel piano, o i poliedri nello spazio.

La rotazione di 90° è una simmetria del quadrato. Componendola 2 o 3 volte, si ottengono le rotazioni di 180° e 270°. Componendola 4 volte, si ottiene la funzione identità.
Ingrandisci
La rotazione di 90° è una simmetria del quadrato. Componendola 2 o 3 volte, si ottengono le rotazioni di 180° e 270°. Componendola 4 volte, si ottiene la funzione identità.

Le trasformazioni della geometria euclidea sono le isometrie: ovvero traslazioni, riflessioni, rotazioni, e composizioni di queste. Ciascuna di queste trasformazioni sposta tutti i punti dello spazio, ed in particolare muove la figura geometrica che vi è contenuta.

Ad esempio, fra le simmetrie di un quadrato troviamo la rotazione oraria di 90° intorno al centro, e la riflessione intorno ad un suo asse. Componendo queste due operazioni si ottengono altre simmetrie del quadrato.

[modifica] Poligoni

Il gruppo delle simmetrie di un poligono regolare con n è un gruppo molto studiato in algebra, detto gruppo diedrale. Ha due generatori: la riflessione s rispetto ad un asse, e la rotazione oraria r di 360 / n gradi. Componendo le simmetrie s e r si ottengono tutte le altre simmetrie, che sono di due tipi:

  • rotazione di k360 / n gradi, per qualche intero k tra 0 e n,
  • riflessione rispetto ad uno degli n assi della figura.

Il gruppo diedrale, di solito indicato con D2n, è quindi un gruppo finito di 2n elementi. Non è un gruppo abeliano: infatti gli elementi r \times s e s\times r sono simmetrie differenti (entrambe riflessioni, ma con assi diversi).

Le 12 simmetrie di un tetraedro ottenibili tramite rotazioni (se ne ottengono altrettante tramite riflessioni)
Ingrandisci
Le 12 simmetrie di un tetraedro ottenibili tramite rotazioni (se ne ottengono altrettante tramite riflessioni)

[modifica] Poliedri

Ciascuno dei cinque solidi platonici ha un gruppo di simmetrie: questi gruppi di simmetrie sono degli oggetti di importanza fondamentale nell'algebra e nella geometria moderne, e si ritrovano in molti contesti differenti. Due solidi platonici duali hanno lo stesso gruppo di simmetrie. Tutti questi gruppi di simmetrie sono finiti e non abeliani.

Il gruppo di simmetrie del tetraedro è il più piccolo fra questi. Ogni permutazione dei vertici del tetraedro è realizzata esattamente da una simmetria, quindi il gruppo è isomorfo al gruppo simmetrico S4, che ha 4!=24 elementi. Fra questi, 12 sono realizzabili tramite rotazioni, e corrispondono al sottogruppo alternante A4, formato dalle permutazioni pari.

[modifica] Coniche

Una circonferenza ha una quantità infinita di simmetrie: le rotazioni di un angolo qualsiasi intorno all'origine, e le riflessioni rispetto ad una retta arbitraria, passante per l'origine. Il gruppo di simmetrie di una circonferenza è quindi infinito, ed è isomorfo al gruppo ortogonale O(1).

Un'ellisse (che non sia una circonferenza) ha invece molte meno simmetrie: le simmetrie s e s' rispetto agli assi, e la loro composizione s\times s' = s'\times s. Il gruppo di simmetrie consta quindi di 4 elementi \{e,s,s',s\times s'\}, è abeliano ed isomorfo al prodotto diretto \mathbb Z/_{2\mathbb Z}\times \mathbb Z/_{2\mathbb Z} di due gruppi ciclici di ordine 2.

Un'iperbole ha lo stesso gruppo di simmetrie, generato dalle riflessioni sui suoi due assi.

Una parabola ha ancora meno simmetrie: oltre all'identità, una riflessione rispetto al suo asse. Quindi il gruppo di simmetrie è isomorfo a \mathbb Z/_{2\mathbb Z}.

[modifica] Dimensione arbitraria

Il gruppo di simmetrie di una sfera Sn di dimensione n è il gruppo ortogonale O(n).

[modifica] Simmetria in algebra

Una simmetria in un'espressione matematica (ad esempio una formula o un'equazione) contenente delle variabili è una permutazione di queste che lascia invariata l'espressione. Ad esempio, nel polinomio

x2 + y2 + z2

ogni permutazione delle variabili è una simmetria, mentre nell'equazione

z = xy

solo la permutazione delle variabili x e y è una simmetria.

Anche in questo contesto le simmetrie formano un gruppo, che è sottogruppo del gruppo simmetrico di tutte le permutazioni delle variabili. Se l'espressione ha un numero finito di variabili, tale gruppo è finito. Una espressione qui è un qualsiasi oggetto matematico formale che dipenda da alcune variabili: ad esempio, anche una relazione binaria o una matrice.

[modifica] Esempi

Il termine "simmetrico" è usato in matematica in vari contesti, e denota sempre la presenza di una particolare simmetria.

[modifica] Riferimenti

  1. Questa definizione di simmetria è così generale da essere stata interpretata come definizione fondante della geometria in senso lato, da Felix Klein nel suo Erlangen Programm del 1872.
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu