Web Analytics
Privacy Policy Cookie Policy Terms and Conditions ארבע פעולות החשבון - ויקיפדיה

ארבע פעולות החשבון

מתוך ויקיפדיה, האנציקלופדיה החופשית

הדף חיבור מפנה לכאן. לחיבור עיוני קצר, ראו מסה (חיבור עיוני)

ארבע פעולות החשבון הן פעולות החשבון הבסיסיות ביותר, השימושיות בחיי היומיום של מרבית בני האדם. פעולות אלה נלמדות בתחילת לימודי המתמטיקה בבית הספר היסודי, וחרף פשטותן היחסית, נדרשת לביצוען מידה מסוימת של הפשטה.

ארבע פעולות החשבון הן חיבור, חיסור, כפל וחילוק. כל אחת מפעולות אלה היא פעולה בינארית, כלומר פונקציה הפועלת על שני מספרים. היום כל-כך מקובל להציג מספרים בכתיב עשרוני, עד שאנו רגילים לזהות את המספר עם ההצגה העשרונית שלו. לשיטות כתיבה אחרות, ראו למשל ספרות רומיות ובסיס.

להבהרת המשך הדיון נציין שפעולה נקראת סגורה בקבוצה מסוימת כאשר התוצאות שהיא מחזירה שייכות תמיד לאותה הקבוצה.

תוכן עניינים

[עריכה] חיבור

משמעותו המקובלת של החיבור היא משמעות של צירוף. בצורה אינטואיטיבית, אם יש לנו שתי קבוצות נפרדות של עצמים, סכומן הוא מספר העצמים שיש בקבוצה המורכבת מהעצמים שבשתי הקבוצות גם יחד. מספר זה נקרא הסכום של שני המספרים המחוברים. הגדרה נאיבית של פעולת החיבור נעשית באמצעות לוח החיבור, שהוא טבלה המציגה את תוצאותיה של פעולת החיבור על כל שני מספרים אפשריים שכל אחד מהם בן ספרה אחת. פעולת החיבור סגורה בקבוצת המספרים הטבעיים, כלומר חיבור של שני מספרים טבעיים אף הוא מספר טבעי.

פעולת החיבור מסומנת בסימן \ +, המבוטא "ועוד" או "פלוס". את הביטוי 3 + 5 יש לקרוא "חמש ועוד שלוש" או "חמש פלוס שלוש".

לוח החיבור
9 8 7 6 5 4 3 2 1 0 +
9 8 7 6 5 4 3 2 1 0 0
10 9 8 7 6 5 4 3 2 1 1
11 10 9 8 7 6 5 4 3 2 2
12 11 10 9 8 7 6 5 4 3 3
13 12 11 10 9 8 7 6 5 4 4
14 13 12 11 10 9 8 7 6 5 5
15 14 13 12 11 10 9 8 7 6 6
16 15 14 13 12 11 10 9 8 7 7
17 16 15 14 13 12 11 10 9 8 8
18 17 16 15 14 13 12 11 10 9 9

[עריכה] חיסור

הדרך האינטואיטיבית המקובלת לחשוב על חיסור היא כעל גריעה: אם בקבוצה היה מספר כלשהו של עצמים וגרענו מהקבוצה חלק מהעצמים, כמה נשארו? חיסור היא הפעולה ההפוכה לחיבור, כלומר אם \!\, a+b=c, הרי פעולת החיסור תיתן תשובה לשאלה: כאשר במשוואה זו ידועים ערכיהם של b ושל c, מהו ערכו של a ? פעולת החיסור אינה סגורה בקבוצת המספרים הטבעיים, משום שחיסור מספר ממספר קטן ממנו נותנת מספר שלילי. פעולת החיסור סגורה בקבוצת המספרים השלמים. ניתן להרחיב את הגדרתה של פעולת החיבור בקבוצת המספרים הטבעיים כך שתחול גם על קבוצת המספרים השלמים.

פעולת החיסור מסומנת בסימן \ -, המבוטא "מינוס" או "פחות". את הביטוי 3 - 5 יש לקרוא "חמש מינוס שלוש" או "חמש פחות שלוש".

נשים לב כי מעל קבוצת המספרים השלמים וקבוצות שמכילות אותה, פעולה של חיסור מספר \ a כלשהו זהה לפעולה של חיבור \ -a, שהוא המספר הנגדי של \ a, כלומר \ x-a=x+(-a). על כן, ניתן לראות כל פעולת חיסור כסוג של פעולת חיבור.

[עריכה] כפל

כפל הוא קיצור של פעולת החיבור, אך באופן כללי נוהגים לראות כפל כפעולה העומדת בפני עצמה. נהוג להסביר את הפעולה על ידי החלפת המילה "כפול" במילה "פעמים". כך ש-a כפול b, הוא בעצם, "a פעמים b" או במפורש, הכפלת מספר a במספר b, דינה כסכום של a עם עצמו b פעמים (או כעוצמת קבוצת האיחוד של b קבוצות זרות בעלות עוצמה a). הגדרה נאיבית של פעולת הכפל נעשית באמצעות לוח הכפל, שהוא טבלה המציגה את תוצאותיה של פעולת הכפל על כל שני מספרים אפשריים שכל אחד מהם בן ספרה אחת. פעולת הכפל סגורה בקבוצת המספרים הטבעיים, וגם בקבוצת המספרים השלמים.

אף שפעולת הכפל הינה חילופית (כלומר, a פעמים b זה אותו מספר כמו b פעמים a), כאשר מתעניינים במשמעות שמקבלים האיברים בפעולת הכפל, יש למיקום חשיבות. לדוגמה, יש אותו מספר בקבוקים בשלוש אריזות של עשרה בקבוקים ובעשר אריזות של שלושה בקבוקים, אך שתי אלו הן בעיות ספירה שונות.

פעולת הכפל מסומנת בסימן \ \times או לפעמים \ \cdot, וכאשר אין סכנה לבלבול, משמיטים אותה כליל. כלומר \ ab זהה לכתיבת \ a\times b, ו-\ 5(3+4) זהה ל\ 5\times(3+4).

לוח הכפל
9 8 7 6 5 4 3 2 1 0 \!\, \times
0 0 0 0 0 0 0 0 0 0 0
9 8 7 6 5 4 3 2 1 0 1
18 16 14 12 10 8 6 4 2 0 2
27 24 21 18 15 12 9 6 3 0 3
36 32 28 24 20 16 12 8 4 0 4
45 40 35 30 25 20 15 10 5 0 5
54 48 42 36 30 24 18 12 6 0 6
63 56 49 42 35 28 21 14 7 0 7
72 64 56 48 40 32 24 16 8 0 8
81 72 63 54 45 36 27 18 9 0 9

הערה: לוח הכפל המוכר יותר (שחיבורו מיוחס לפיתגורס) עוסק במכפלות בתחום 1-10, ולא בתחום 0-9 כפי שמוצג כאן. אין טעם טכני בהצגת מכפלות של 10, משום שאלה הן כבר מכפלות של מספר בן שתי ספרות, שאותן ניתן לבצע לפי לוח הכפל המופיע כאן, והכללים לכפל של מספרים בני יותר מספרה אחת.

[עריכה] חילוק

בצורה אינטואיטיבית יש שתי משמעויות מקובלות לחילוק. הראשונה שבהן היא חלוקה לחלקים שווים: אם יש לנו קבוצה בת a איברים וחילקנו אותה ל-b קבוצות שוות בגודלן, כמה איברים יש בכל קבוצה? אם חילקנו עשר פרוסות עוגה בין חמישה ילדים, כמה פרוסות קיבל כל ילד? מקובל לקרוא לדרך התבוננות זו על חילוק בשם "חילוק לחלקים".

המשמעות השנייה שואלת, בהינתן שיש לנו קבוצה בגודל a שחילקנו למספר קבוצות שוות בגודל b, מהו מספר הקבוצות שאליהן חילקנו? לדוגמה, אם חילקנו עשר פרוסות עוגה בין מספר ילדים בצורה שווה כך שכל ילד קיבל שתי פרוסות, כמה ילדים יש? דרך התבוננות זו נקראת "חילוק להכלה". שם זה נובע מכך שבחלוקה זו, אנו מקבלים מידע על החלק ועל השלם, ושואלים כמה פעמים החלק מוכל בשלם. בדוגמת העוגות, אנו יודעים שגודל כל חלק הוא 2 וגודל השלם הוא 10, ושואלים את עצמו כמה פעמים נכנס (מוכל) 2 ב-10.

מנקודת מבט פורמלית יותר, חילוק היא הפעולה ההפוכה לכפל, כלומר אם \ a\times b=c, הרי פעולת החילוק של c ב-b תיתן תשובה לשאלה: כאשר במשוואה זו ידועים ערכיהם של b ושל c, מהו ערכו של a?

אם קיים מספר שלם כזה, אז b מחלק את c. למשל, 6 מחלק את 18 משום ש- 3\times 6=18 (לפעמים כותבים b | c כדי לציין ש- b מחלק את c). פעולת החילוק אינה סגורה בקבוצת המספרים הטבעיים, וגם לא בקבוצת המספרים השלמים, משום שחילוק של 7 ב-2, למשל, נותן תוצאה שאינה מספר שלם. ביצוע פעולת חילוק זו בקבוצת המספרים השלמים נותן תוצאה 3 ושארית 1. פעולת החילוק סגורה בקבוצת המספרים הרציונליים. ניתן להרחיב את הגדרתן של פעולת החיבור, החיסור והכפל כך שיחולו גם על קבוצת המספרים הרציונליים (ראו בערך מספר רציונלי).

עם זאת, מעל קבוצת המספרים הרציונליים (וגם המספרים הממשיים והמרוכבים) התוצאה של חלוקה באפס אינה מוגדרת היטב. זאת מכיוון שמכפלת כל מספר באפס נותנת אפס, ולכן לכל \ c\ne 0 לא קיים מספר \ a כך ש\ a\times 0=c, ואילו כאשר המשוואה שלנו היא \ a\times 0=0 הרי שכל מספר הוא תשובה לשאלה שלנו, ולכן התשובה איננה חד משמעית. ישנם פיתוחים מתמטיים של קבוצות המספרים כך שחלוקה באפס תתאפשר (תוך ויתור על חלק מתכונות המספרים), אך באופן כללי תוצאה של חלוקה באפס נותרה בלתי מוגדרת.

פעולת החילוק מסומנת בסימן \ / ובסימן \ :. באופן מעשי לרוב נהוג לכתוב חילוק באמצעות שבר, כאשר המחולק הוא המונה והמחלק הוא המכנה.

נשים לב כי מעל קבוצת המספרים הרציונליים וקבוצות שמכילות אותה, פעולה של חילוק במספר \ a כלשהו זהה לפעולה של כפל במספר \ \frac{1}{a}, שהוא המספר ההופכי של \ a, כלומר \ x:a=x\times\frac{1}{a}. על כן, ניתן לראות כל פעולת חילוק כסוג של פעולת כפל.

ניתן להרחיב את הגדרתן של פעולות החיבור, החיסור, הכפל והחילוק כך שיחולו גם על קבוצת המספרים הממשיים וקבוצת המספרים המרוכבים.

ראו גם: מבחני התחלקות

[עריכה] קדימות אופרטורים

כל אחת מארבע פעולות החשבון פועלת, כאמור לעיל, על שני מספרים, אך ניתן לכתוב ביטויים הכוללים מספרים רבים ופעולות רבות, ובמקרה זה נחוצים כללים לקביעת סדר ביצוע הפעולות (פעולה קרויה גם אופרטור, ומספרים שעליהם היא פועלת קרויים אופרנדים). הכלל הראשון קובע שפעולות כפל וחילוק קודמות לפעולות חיבור וחיסור. כדי לבצע את הפעולות בסדר שונה מהאמור בכלל זה יש להשתמש בסוגריים. לאחר שני כללים אלה, הפעולות מתבצעות משמאל לימין.

אין חשיבות לסדר בין פעולות הכפל והחילוק, שכן הן נותנות את אותה תוצאה בלי קשר לסדר ההפעלה, וכך גם עבור חיבור וחיסור. הדבר אינו מקרי - כפי שראינו, ניתן לראות חילוק כסוג של כפל, וחיסור כסוג של חיבור, ולהלן נראה כי פעולות החיבור והכפל הן אסוציאטיביות, כלומר אין חשיבות לסדר הפעלתן.

דוגמאות:

  • את הביטוי 3 + 4 \times 5 יש לחשב: תחילה 4 \times 5 = 20 ולתוצאה להוסיף 3, כך שערכו של הביטוי הוא 23.
  • את הביטוי (3 + 4) \times 5 יש לחשב: תחילה \ 3 + 4 = 7 ואת התוצאה יש להכפיל ב-5, כך שערכו של הביטוי הוא 35.
  • הביטוי \ 3 \times 4 : 2 נותן את הערך 6 בלי חשיבות לסדר החישוב: אם מכפילים 3 ב-4 מקבלים 12, ובחלוקה ב-2 מקבלים 6, ואילו אם מחלקים 4 ב-2 מקבלים 2, ובכפל ב-3 מקבלים 6.

בצורת הכתיב המקובלת נכתבת הפעולה, ומשני צדיה המספרים שעליהם היא פועלת. כתיב שאינו מקובל בחיי היומיום הוא הכתיב הפולני, שבו נכתבת הפעולה ואחריה שני המספרים שעליהם היא פועלת. יתרונו של הכתיב הפולני בכך שאין צורך בו בכללי קדימות אופרטורים, ואין צורך בסוגריים.

[עריכה] תכונות הפעולות

[עריכה] אסוציאטיביות (חוק הקיבוץ)

הן החיבור והן הכפל מקיימים את תכונת האסוציאטיביות. פירוש הדבר הוא, עבור כל אחת מהפעולות, שאין חשיבות לסדר הפעלתן כאשר הן היחידות מסוגן וניתן לקבץ אותן בסוגריים בלי שהדבר ישפיע על התוצאה. כלומר, מתקיים:

  • \ (a + b) + c = a + (b + c) ולכן ניתן לכתוב פשוט \ a+b+c.
  • a\cdot(b \cdot c)=(a\cdot b)\cdot c ולכן ניתן לכתוב פשוט a\cdot b\cdot c.

[עריכה] קומוטטיביות (חוק החילוף)

הן החיבור והן הכפל מקיימים את תכונת הקומוטטיביות. פירוש הדבר הוא שכאשר מחברים או מכפילים שני מספרים, אין חשיבות לשאלה מי הראשון ומי השני. כלומר, מתקיים:

  • \!\, a+b=b+a.
  • \!\, a\times b=b\times a.

לעומת זאת, חיסור וחילוק אינן קומוטטיביות. כאשר מתרגמים את אופרטורי החילוק והחיסור לאופרטורי חיבור וכפל משנים את האופרנד השני, ולכן יש חשיבות לסדר האופרנדים. קל לראות זאת על ידי דוגמה:

  • \!\, 1-0=1, אבל \!\, 0-1=-1. אין זה מקרי שקיבלנו מספרים ששונים בסימנם - זוהי תכונה כללית.
  • \!\, 4:2=2, אבל\!\, 2:4=\frac{1}{2}. גם כאן, אין זה מקרי שקיבלנו שני מספרים כך שהאחד שווה ל-1 חלקי השני.

כדאי לשים לב שכאשר משתמשים בכפל בחיי היום יום, יכולה להיות חשיבות לשאלה מי המוכפל הראשון ומי השני. למשל: אם מחלקים לחמישה ילדים שמונה ארטיקים ואם מחלקים לשמונה ילדים חמישה ארטיקים, מספר הארטיקים הכולל שמחולק הוא ארבעים בכל אחת מהפעמים, אולם שני המקרים נבדלים זה מזה בבירור.

[עריכה] דיסטריבוטיביות (חוק הפילוג)

החוק הקושר את פעולות החיבור והכפל הוא חוק הפילוג (החוק הדיסטריבוטיבי), הקובע שלכל שלושה מספרים \ a,b,c מתקיים ש a\cdot(b+c)=a\cdot b+a\cdot c.

[עריכה] פעולות החשבון בחיי היומיום

פעולות החשבון הן פעולות מופשטות, המוגדרות על עצמים מופשטים - המספרים. חרף זאת, יש לפעולות החשבון שימושים רבים בחיי היומיום, כפי שיעידו הדוגמאות הבאות:

  • בידי השמאלית שקית ובה חמישה תפוחים, ובידי הימנית שקית ובה שבעה תפוחים. כמה תפוחים יש בשתי ידי? התשובה ניתנת באמצעות פעולת החיבור, והיא: שנים-עשר תפוחים.
  • דני מחזיק שקית ובה עשר סוכריות. הוא נותן לדנה ארבע סוכריות. כמה סוכריות נותרו לדני? התשובה ניתנת באמצעות פעולת החיסור, והיא: שש סוכריות.
  • כל תלמיד בכיתה שבה עשרים תלמידים תרם חמישה שקלים לקרן הקיימת. כמה שקלים נתרמו בסך הכל? התשובה ניתנת באמצעות פעולת הכפל, והיא: מאה שקלים.
  • לכיתה בת עשרה תלמידים הגיעה שקית ובה חמישים סוכריות, שחולקו שווה בשווה בין התלמידים. כמה סוכריות קיבל כל תלמיד? התשובה ניתנת באמצעות פעולת החילוק, והיא: חמש סוכריות.

נשים לב למשותף חשוב לכל הדוגמאות הללו: בכולם הספירה נעשית באמצעות מספרים טבעיים (מספרים חיוביים שלמים) - ואכן, לרוב יש משמעות אינטואיטיבית לפעולות החשבון רק כאשר הן עוסקות במספרים טבעיים, (אף כי גם למספרים רציונליים יש מקום - למשל, תשלום יכול להיעשות בחלקי שקלים, ומינוס יכול לייצג חוב), כפי שמראה הדוגמה הבאה:

  • אדם קנה אצל הירקן 4.5 ק"ג עגבניות במחיר של 3.25 ש"ח לקילוגרם וחמישה ק"ג בצל במחיר של 2.55 ש"ח לק"ג. הוא הושיט לירקן שטר של 20 ש"ח, כמה עודף יקבל?

[עריכה] כלים לביצוע פעולות החשבון

מחשבון סרט דיגיטלי
הגדל
מחשבון סרט דיגיטלי

פעולות החשבון הן פעולות מופשטות על עצמים מופשטים, ולכן ניתן לבצע אותן במוח האדם. ניתן להיעזר בכלי כתיבה לשם רישום הפעולות וביצוע הטכניקות המקובלות לשם קבלת התוצאה.

כלים ספציפיים לביצוע פעולות החשבון הם:

[עריכה] הגדרות פורמליות

[עריכה] חיבור

את החיבור במספרים הטבעיים מגדירים תוך שימוש באקסיומת העוקב של אקסיומות פאנו (לכל מספר טבעי קיים מספר עוקב ולא קיים מספר שהעוקב שלו 0), שאותן מקיימים המספרים הטבעיים. אם \!\, a^+ הוא הסימון לעוקב של \!\, a, אז החיבור מוגדר באינדוקציה כך:

  • \!\, a+0=a.
  • \!\, \left(a+b^+\right)=(a+b)^+.

לדוגמה: \!\, (4+2)=(4+1)^+=\left((4+0)^+\right)^+=\left((4)^+\right)^+=\left(5\right)^+=6.

[עריכה] כפל

גם את הכפל ניתן להגדיר אינדוקטיבית על ידי שימוש בהגדרת העוקב:

  • a\cdot 1 = a
  • a\cdot b^+ = a\cdot b+a

לדוגמה: 5 \cdot 3 = 5 \cdot 2 + 5 = (5 \cdot 1 + 5) +5  = 5 \cdot 1+ 10 = 5 + 10 =15

[עריכה] פעולות החשבון בקבוצות אחרות

הפעולות שהראינו כאן מוגדרות על קבוצות של מספרים, אולם באלגברה מופשטת מעוניינים לחקור את תכונותיהן של פעולות שמוגדרות על קבוצות כלשהן, לא בהכרח של מספרים, אך שמזכירות את פעולות החשבון על המספרים.

מעל שדות נוהגים להגדיר פעולות של "חיבור" ו"כפל", ולדרוש שפעולות אלו יקיימו את תכונות האסוציאטיביות, הקומוטטיביות והדיסטריביוטיביות שהראינו קודם, וכן שיהיה קיים איבר נייטרלי לכל אחת מהפעולות, ואיבר הופכי לכל אחת מהפעולות. אם כל הדרישות הללו מתמלאות, הרי שהפעולות שהוגדרו אכן מזכירות בתכונותיהן את הפעולות שמוגדרות מעל המספרים, וניתן להגדיר חיסור וחילוק באמצעותן. מכאן ניתן לראות שקבוצות המספרים הרציונליים, הממשיים והמרוכבים, עם הפעולות שהוגדרו עליהן, הם בעצם מקרים פרטיים (חשובים מאוד) של שדות.

[עריכה] ראו גם

[עריכה] קישורים חיצוניים

[עריכה] לקריאה נוספת

  • רון אהרוני, חשבון להורים - ספר למבוגרים על מתמטיקה של ילדים, הוצאת שוקן, 2004.
ערך מומלץ
שפות אחרות
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu