Web Analytics
Privacy Policy Cookie Policy Terms and Conditions Demi-plan de Poincaré - Wikipédia

Demi-plan de Poincaré

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).

Le demi-plan de Poincaré est un sous-ensemble des nombres complexes. Il a permis au mathématicien français Henri Poincaré d'éclairer les travaux du Russe Nicolaï Lobatchevski.

Sommaire

[modifier] Le demi-plan de Poincaré (1882)

Le demi-plan de Poincaré est formé par les nombres complexes de partie imaginaire strictement positive. Il fournit un exemple de géométrie non euclidienne, plus précisement de géométrie hyperbolique.

[modifier] Géométrie

On considère le demi-plan supérieur :

\mathcal{H}_2 \ = \ \left\{ \ z = x + i y \ / \ y \ > \ 0 \ \right\}

[modifier] Métrique

On munit le demi-plan supérieur de la métrique :

ds^2 \ = \ \frac{a^2 \, \left( \, dx^2 \, + \, dy^2 \, \right)}{y^2}

Cette métrique possède une courbure scalaire constante négative :

R \ = \ - \ \frac{1}{a^2}

On se ramène usuellement au cas d'une courbure unité, c'est à dire qu'on choisi : a = 1 pour simplifier les équations.

[modifier] Géodésiques

Les géodésiques sont les demi-droites (au sens euclidien) verticales : x = cte (en rouge) et les demi-cercles (au sens euclidien) perpendiculaires à l'axe des abscisses  : y = 0 (en bleu) :

Image:geodes.GIF

On pourra consulter le site du mathématicien Andrew G. Bennett (université du Kansas) qui contient 3 applets java sur les géodésiques, les cercles hyperboliques et les triangles hyperboliques.

[modifier] Homographies

Les matrices de GL_2^+(\mathbb R) agissent sur cet espace, par homographies [1]. Plus précisément, soit g un élément de GL_2^+(\mathbb R) :

g \ = \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad , \quad \mathrm{det} \, g \ = \ ad - bc > 0

Son action sur un point z du demi-plan est donnée par :

g(z) \ = \ \frac{az+b}{cz+d}

[modifier] Groupes Fuchiens

[modifier] Formes automorphes

[modifier] Dynamique chaotique

Le flot géodésique sur une variété riemannienne à courbure négative est le prototype de système dynamique à temps continu le plus chaotique qui soit, une propriété remarquée dès 1898 par Hadamard [HA98]. On sait aujourd'hui que ce flot est, par ordre croissant d'irrégularités [AA88], [PA91] :

  • ergodique
  • mélangeant (« mixing »)
  • K-système (Anosov)
  • C-système = bernouillien [OW73].

Lire aussi : [BV86], [CO92], [SC92].

[modifier] Liens

[modifier] Bibliographie

[modifier] Ouvrages de mathématiques

[modifier] Géométrie

  • John Stillwell ; Geometry of Surfaces, Universitext, Springer-Verlag (1992), ISBN 0-387-97743-0.
  • Toshitsune Miyake ; Modular forms, Springer-Verlag (1989), ISBN 0-387-50268-8. Attention, ce n'est pas un livre pour débutant !

[modifier] Chaos

  • [HA98] Jacques Hadamard ; Les surfaces à courbures opposées et leurs lignes géodésiques, Journal de Mathématiques Pures & Appliquées 4 (1898) 27.
  • [PA91] Pierre Pansu ; Le flot géodésique des variétés Riemanniennes à courbure négative, Séminaire Bourbaki 738 (1991) publié dans : Astérisque 201-203 (1991) 269-298.
  • [OW73] Donald S. Ornstein & Benjamin Weiss ; Geodesic flows are Bernouillians, Isreal Journal of Mathematics 14 (1973) 184.
  • [AA88] Vladimir Arnold & André Avez ; Ergodic problems of classical mechanics, Advanced Book Classics, Addison-Wesley (1988).

[modifier] Références pour physiciens théoriciens

  • [BV86] Nandor Balasz & André Voros ; Chaos on the pseudosphere, Physics Report 143 (1986) 109.
  • [CO92] Yves Colin de Verdière ; Hyperbolic geometry in two dimensions and trace formulas, dans : Marie-Joya Giannoni, André Voros & Jean Zinn-Justin (éditeurs) ; Chaos & Quantum Physics, Proceeedings de l'École d'Eté de Physique Théorique des Houches (1989) Session LII, North-Holland (1991), ISBN 0-444-89277-X.
  • [SC92] Charles Schmit ; Quantum and classical properties of some billiards on the hyperbolic plane, dans : Marie-Joya Giannoni, André Voros & Jean Zinn-Justin (éditeurs) ; Chaos & Quantum Physics, Proceeedings de l'École d'Eté de Physique Théorique des Houches (1989) Session LII, North-Holland (1991), ISBN 0-444-89277-X.

[modifier] Notes

  1. Le groupe GL_2^+(\mathbb R) est le sous-groupe de GL_2(\mathbb R) formé par les matrices de déterminant positif.


Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.
Portail de la physique – Accédez aux articles de Wikipédia concernant la physique.
Autres langues
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu