Web Analytics
Privacy Policy Cookie Policy Terms and Conditions Opérateur laplacien - Wikipédia

Opérateur laplacien

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).
\Delta=\nabla^2
=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}
Article d' Analyse vectorielle
Équation aux dérivées partielles
Équation de Laplace
Équation de Poisson
Théorème de Green
Théorème de Stokes
Electrostatique


Opérateurs
Nabla
Laplacien
Gradient


en théorie physique
groupe
physique mathématique
Modèle standard (physique)

En calcul vectoriel, l'opérateur laplacien ou le laplacien est un opérateur différentiel égal à la somme de toutes les deuxièmes dérivées partielles non mixtes d'une variable dépendante. Il apparait dans l'équation de Laplace et l'équation de Poisson.

Symbolisé par la lettre grecque delta, il peut aussi être défini comme la divergence du gradient, noté div (grad φ), d'où les identités :

\Delta\phi \ = \ \nabla^2 \phi \ = \ \nabla \cdot ( \nabla \phi )

Cet opérateur admet une généralisation aux espaces non-euclidiens suffisamment lisses, appelé opérateur de Laplace-Beltrami.

Sommaire

[modifier] Expression dans différents systèmes de coordonnées

[modifier] Coordonnées cartésiennes

\Delta=\nabla^2 = {\partial^2 \over \partial x^2 } + {\partial^2 \over \partial y^2 }
  • En coordonnées cartésiennes tridimensionnelles:
\Delta=\nabla^2 =  {\partial^2 \over \partial x^2 } + {\partial^2 \over \partial y^2 } + {\partial^2 \over \partial z^2 }
  • En coordonnées cartésiennes dans \mathbb{R}^n:
\Delta f(x_1,...,x_n)= \sum_{k=1}^n {\partial^2 f \over \partial x_k^2 }(x_1,...,x_n)

[modifier] Coordonnées cylindriques

\nabla^2 f  = {1 \over r} {\partial \over \partial r}   \left( r {\partial f \over \partial r} \right)  + {1 \over r^2} {\partial^2 f \over \partial \phi^2} + {\partial^2 f \over \partial z^2 }

[modifier] Coordonnées sphériques

\nabla^2 f  = {1 \over r^2} {\partial \over \partial r}   \left( r^2 {\partial f \over \partial r} \right)  + {1 \over r^2 \sin \theta} {\partial \over \partial \theta}   \left( \sin \theta {\partial f \over \partial \theta} \right)  + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}

[modifier] Propriétés

  • L'opérateur laplacien est linéaire:
Δ(f + g) = Δf + Δg
  • L'opérateur laplacien vérifie la règle de Leibniz pour un opérateur différentiel d'ordre deux :
\Delta ( fg ) \ = \ ( \Delta f ) \ g \ + \ 2 \ ( \nabla f ) \cdot ( \nabla g ) \ + \ f \ ( \Delta g )
  • L'opérateur laplacien est un opérateur négatif, au sens où, pour toute fonction φ lisse à support compact, on a :
\int \phi \ \Delta \phi \ = \ - \ \int || \mathrm{grad} \ \phi ||^2  \ \le \ 0
Cette égalité se démontre en utilisant la relation \Delta = \mathrm{div} \ \mathrm{grad}, en intégrant par partie, et en utilisant une version du théorème de Stokes.

[modifier] Fonction harmonique

Une fonction f: E \rightarrow \mathbb{R} (avec E \subset \mathbb{R}^n) est dite harmonique si :

\forall x \in E, \,\, \Delta f(x) = 0

[modifier] Articles connexes

[modifier] Lien externe


Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.
Portail de la physique – Accédez aux articles de Wikipédia concernant la physique.
Portail Géodésie et Géophysique — Accédez aux articles de Wikipédia concernant la géodésie et la géophysique.
THIS WEB:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia 2006:

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu