Privacy Policy Cookie Policy Terms and Conditions Satz von Arzelà-Ascoli - Wikipedia

Satz von Arzelà-Ascoli

aus Wikipedia, der freien Enzyklopädie

Der Satz von Arzelà-Ascoli, benannt nach Cesare Arzelà (1847-1912) in Erweiterung eines Satzes von Giulio Ascoli (1843-1896), ist ein wichtiger Satz in der Funktionalanalysis. Er lautet:

Sei X ein kompakter metrischer Raum, Y ein vollständiger normierter Raum und F\subseteq C_b(X,Y) eine Menge stetiger beschränkter Abbildungen X\to Y. Dann gilt: F ist genau dann relativ kompakt in Cb(X,Y), wenn F gleichgradig stetig ist, und für jedes x\in X die Menge \{f(x):f\in F\} relativ kompakt in Y ist.

[Bearbeiten] Beweisskizze

Der Beweis benutzt das cantorsche Diagonalverfahren, in welchem auf rekursive Art partiell konvergente Teilfolgen konstruiert werden, um dann quer durch alle Teilfolgen eine überall konvergente Teilfolge zu erhalten.

Sei \{f_n\}_{n\in\N}\subset F eine beliebige Funktionenfolge in der Funktionenfamilie F. Zu zeigen ist, dass diese eine in Cb(X,Y) konvergente Teilfolge enthält.

Dazu wählt man sich eine aufsteigende Folge von endlichen Teilmengen A_N\subset A_{N+1}\subset X, welche gegen eine in der kompakten Menge X dichte Teilmenge A_\infty:=\bigcup_{N=1}^\infty A_N „konvergiert“. Die Funktionenfolge, eingeschränkt auf eine solche Teilmenge \{f_n{}_{|A_k}\}_{n\in\N}, enthält nach Voraussetzung eine auf Ak konvergente Teilfolge, denn ein endliches kartesisches Produkt relativ kompakter Mengen ist wieder relativ kompakt.

Sei f0,k = fk die nullte, triviale Teilfolge. Dann kann rekursiv, beginnend mit N=1,2,..., in \{f_{N-1,k}\}_{k\in\N} eine Teilfolge \{f_{N,k}\}_{k\in\N} ausgewählt werden, die auf AN konvergiert. Dann konvergiert nach dem Cantorschen Diagonal„trick“, die Diagonalfolge \{f_{N,N}\}_{N\in\N} auf der dichten Teilmenge A_\infty\subset X gegen eine Funktion f:A_\infty\to Y.

Aus der gleichgradigen Stetigkeit folgt, dass die so erhaltene Grenzfunktion auf ganz X stetig und beschränkt fortgesetzt werden kann zu \bar f:X\to Y und es folgt ebenfalls, dass die Diagonalfolge auch in der Supremumsnorm gegen die so konstruierte Funktion konvergiert: \lim_{N\to\infty} f_{N,N}=\bar f in Cb(X,Y).

[Bearbeiten] Literatur

  • Johann Cigler, Hans-Christian Reichel: Topologie. Eine Grundvorlesung. ISBN 3411051213
  • Harry Poppe: Compactness in General Function Spaces, Berlin 1974
  • René Bartsch: On a nice embedding and the Ascoli-theorem, New Zeal. J. of Math. , Vol.33, No. 1, 25-39 (2004) preprint als pdf
Andere Sprachen

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -