Privacy Policy Cookie Policy Terms and Conditions Benutzer:Toaster - Wikipedia

Benutzer:Toaster

aus Wikipedia, der freien Enzyklopädie

Meine Seite

[Bearbeiten] ==

In der abstrakten Algebra kann man aus zwei oder mehr gegebenen Gruppen das freie Produkt konstruieren. Seien die Gruppen G und H gegeben, so kann das freie Produkt G∗H folgendermaßen definiert werden:

Hat man die Repräsentationen von G und H, so bildet man die (disjunkte) Vereinigung der jeweiligen Erzeuger und fügt die zugehörigen Relationen für G und H hinzu. Damit erhält man eine Repräsentation von G∗H, wobei "frei" bedeutet, dass in dem Produkt keine Relationen zwischen Elementen von G und H bestehen.

Beispiel: Sind G und H unendliche zyklische Gruppen, so ist G∗H eine freie Gruppe mit zwei Erzeugern.

Das freie Produkt tritt vor allem in der Theorie der Fundamentalgruppe in der algebraischen Topologie auf. Sind beispielweise X und Y topologische Räume, die in einem Punkt verbunden sind (durch die direkte Summe?), so ist die Fundamentalgruppe pi(X,Y) freies Produkt der Fundamentalgruppe der einzelnen Räume. Dies ist ein Spezialfall des van Kampen-Theorem. (The modular group is a free product of cyclic groups of orders 2 and 3, up to a problem with defining it to within index 2. Groups can be shown to have free product structure by means of group actions on trees.)

The above definition may not look like an intrinsic one. The dependence on the choice of presentation can be eliminated by showing that the free product is the coproduct in the category of groups.

The more general construction of free product with amalgamation is correspondingly a pushout in the same category. Suppose G and H are given as before, along with group homomorphisms

\varphi : F \rightarrow G\mbox{ and }\psi : F \rightarrow H.

Start with the free product G∗H and adjoin as relations

\varphi(f)\psi(f)^{-1}=e

for every f in F. In other words take the smallest normal subgroup N of G∗H containing all of those elements on the left-hand side, which are tacitly being considered in G∗H by means of the inclusions of G and H in their free product. The free product with amalgamation of G and H, with respect to φ and ψ, is the quotient group

(G * H)/N.\,

The amalgamation has forced an identification between φ(F) in G with ψ(F) in H, element by element. This is the construction needed to compute the fundamental group of two connected spaces joined along a connected subspace, with F taking the role of the fundamental group of the subspace. See: Seifert-van Kampen theorem.

One may similarly define free products of other algebraic structures than groups, including algebras over a field. Free products of algebras of random variables play the same role in defining "freeness" in the theory of free probability that Cartesian products play in defining statistical independence in classical probability theory.

[Bearbeiten] See also

  • Free group
  • Direct product

[[Category:Group theory]] [[Category:Algebraic topology]]

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -