Privacy Policy Cookie Policy Terms and Conditions Diskussion:Optimierung (Mathematik) - Wikipedia

Diskussion:Optimierung (Mathematik)

aus Wikipedia, der freien Enzyklopädie

[Bearbeiten] Lemma

Hallo,

der Artikel scheint mir unter dem falschen Lemma zu liegen. Man sollte Teile nach Optimierungsalgorithmus oder Parameteroptimierung verschieben. Unter diesem Lemma denke ich eher an die Variationsrechnung, also das Finden einer optimalen Funktion. --Suricata 12:54, 29. Mär 2005 (CEST)

Hallo Suricata! Das Problem ist, dass es bisher zum Thema Optimierung nur hier und da verstreut ein paar Zeilen gab, die zudem mit den Muttergebieten Numerik, Statistik und Informatik schlecht verlinkt waren. Zudem finde ich den Zehnzeiler-Artikel zu "Optimierungsproblem" aus der Informatik ziemlich schlecht verständlich, zumal für eine allgemeine Einführung in einem allgemeinen Lexikon. Das Problem in der Wiki (und Wissenschaft allgemein) ist halt, dass dasselbe Problem oft von unterschiedlichen Fakultäten behandelt wird. Optimierung liegt im Schnittgebiet zwischen Numerik, Informatik, Statistik und Operations Research. Ich habe jetzt die Links aus dem Artikel "Optimierungsalgorithmus" in diesem hier untergebracht. Ich denke, dieser Artikel hier ist ganz gut dazu geeignet, von Informatikern, Mathematikern usw. weiter aufgebaut und ergänzt zu werden. Grüsse, Croco

Hallo Croco, Der Artikel ist gut. Ich würde jedoch die Optimierungsverfahren nach Optimierungsalgorithmus auslagern. --Suricata 17:10, 29. Mär 2005 (CEST)
Und noch ein Hinweis, Du hast recht, dass die Artikel Optimierungsproblem sehr unverständlich ist, und Optimierungsalgorithmus ebenso. Ein neuer Artikel unter einem unbelegten Lemma verbessert leider die Situation nicht, sondern schafft Verwirrung. Versuche mal unter diesem Aspekt etwas Ordnung zu schaffen. Es gehört dazu auch in fremden Artikeln rumzuwursteln. --Suricata 17:19, 29. Mär 2005 (CEST)

Alternative wäre, "Optimierungsalgorithmus" auf "Optimierung (Mathematik)" zu redirecten. Ich weiss nicht, ob es so übersichtlich ist, das Problem und die Liste der Lösungsmethoden zu trennen. Oft ist den Leuten, die auf der Suche nach Methoden sind, gar nicht bewusst oder bekannt, dass es auch globale Optimierungsprobleme gibt und dass sie es vielleicht mit einem solchen zu tun haben. Aber diese Strukturierungsfrage überlasse ich auch gerne Euch. Grüsse, Croco.

Ihr könnt auch Du zu mir sagen :-) Ich werde mich vielleicht morgen mal um die Strukturierung kümmern. Was mir eben fehlt sind echte mathematische Optimierungsaufgaben wie

  • Welcher Körper hat bei vorgegebenem Volumen die kleinste Oberfläche?
  • Die schnellste Rutschbahn zwischen zwei Punkten (Brachistochrone)
  • Idealllinie eines Rennfahrers in einer mathematischen Fläche

Dabei helfen die genannten Optimierungsverfahren recht wenig. --Suricata 17:32, 29. Mär 2005 (CEST)

Als einfaches Beispiel könnte man sowas bringen. Aber das ist nicht der Inhalt der Optimierungsforschung, eher ne Rechenaufgabe für Studenten. Obwohl: Man rennt auch schon in einer Diplomarbeit schnell gegen die Hürden ganz anderer Aufgaben. Bei der Optimierung in der Numerik/Statistik/Operations Research/Chemie/Physik geht's um ziemlich komplexere Aufgabenstellungen und Fittopologien. Und da wird's dann auch richtig interessant. Mach dir mal ein Bild, indem du auf entsprechende Seiten gehst. Lehrstuhl Ritter an der TU München ist z.B. ein "Optimierungs"lehrstuhl, der viel auf physikalischen Aufgabengebieten arbeitet. (Mit dem hab' ich aber nix zu tun.) Ich hatte schon mit Optimierungsproblemen zu tun, in denen es ca. 60.000 offene Parameter gab. Ich habe gerade hier mit einem Kalibrationsproblem zu tun, bei dem die Rechenkosten für EINEN Funktionsaufruf auf einer Dual CPU-Maschine ca. 10 min. betragen. Da müssen dann Numerik, Mathematik und Informatik ineinandergreifen. Grüsse! Croco

Hallo Croco, ich bin da etwas anderer Meinung. Die Optimierungsverfahren arbeiten mit einfachen mathematischen Mitteln, dafür mit viel Rechenleistung und mit Heuristiken. Die Frage, warum die Brachistochrone die schnellste Rutschbahn zwischen zwei Punkten ist, sollte ein Mathematikstudent berechnen können (gerade so). Warum die Gerade die kürzeste Verbindung zwischen zwei Punkten ist und die Kugel eine minimale Oberfläche hat, kann Dir kaum ein Student beantworten. Von der dichtesten Kugelpackung ganz zu schweigen. --Suricata 08:06, 30. Mär 2005 (CEST) Sorry, ich korrigiere: Theorie der endlichen Kugelpackungen --Suricata 08:08, 30. Mär 2005 (CEST)


Hallo Suricata!

Sorry, gestern hatte ich ziemlich wenig Zeit, auch zum Nachdenken. Du hast natürlich recht, mit "Einfach" oder "Schwierig" ist es bei der Abgrenzung hier nicht getan. Variationsrechnung ist ja kein R^N \to R-Problem, sondern ein C \to R-Problem. Aber deshalb heisst es ja auch anders und wird ja auch schon in einem entsprechenden Artikel behandelt. Ein Querverweis von hier in die Variationsrechnung finde ich sehr nützlich. Dass es sich bei der Variationsrechnung um die "echte" Optimierung handelt - wie kommst du darauf? Wer hat das so definiert? Gib mal in Google "Optimization" ein! Die erste vier Links, die bei mir gerade kamen, waren:

http://epubs.siam.org/sam-bin/dbq/toclist/SIOPT http://www.ece.northwestern.edu/OTC/ http://solon.cma.univie.ac.at/~neum/glopt.html http://plato.la.asu.edu/topics/problems.html

Schau dir diese mal an! Das SIAM-Journal ist tatsächlich sehr wichtig für das Gebiet. Und du siehst, dass mehr als Dreiviertel der Artikel sich mit den von mir geschilderten Problemen befassen. Das Stichwort "Lineare Programmierung" und "Nichtlineare Programmierung" sollte vielleicht noch irgendwo fallen, aber der Kern der beiden Verfahrensklassen ist genau ein parametrisches Optimierungsproblem, wie im Artikel geschildert. Auch die anderen drei Links führen so Software und Darstellungen, die nichts mit Vairationsrechnung, aber sehr viel mit dem zu tun haben, was in dem Artikel jetzt steht. Ich finde es für eine Encyclopädie eminent wichtig, dass die Definitionen der Communities eingehalten werden. Dass also ein Fachartikel zum Thema "Rot" nicht etwas beschreibt, was die Community unter "Blau" kennt. Wenn es neben "Blau" noch "Hellblau" und "Türkis" gibt - wunderbar. Dann soll es dort auch erwähnt oder verlinkt werden. Ich habe z.B. die reine informatische Optimierung hier auch nicht behandelt, Stichwort Traveling-Salesman-Problem. Das führt dann in die Optimierung von Algorithmen. Aber ich finde, ein Link sollte dazu schon noch rein. Grüsse! Croco

[Bearbeiten] Struktur

Alles dies (Variationsrechnung, Travelling Salesman) sind Teilgebiete der Optimierung (Unendlichdimensionale Optimierung, ganzzahlige Optimierung). Ich habe mal eine Klassifikation eingefügt, die das (zumindest potentiell) klarer machen soll. Wie soll es denn in den Abschnitten zu jeder Unterklasse (Lineare Programmierung, etc) weitergehen: jeweils nur ein kurzer Abriss und Link auf Spezialseite? Oder doch längere Diskussion. Ich wäre für ersteres. Zwei Fragen zur Terminologie: sollte man anstatt Parameter nicht besser Variablen sagen? Parameter ist für mich etwas, was z.B. eine Famillie von optimierungsproblemen definiert. Und "Liniensuche" klingt nach wortwörtlicher Übersetzung von "linesearch". Wie heisst das denn richtig auf Deutsch? Werner: Numerische Mathematik II, Vieweg spricht von Schrittweitensuche. Grothey 16:36, 15. Dez 2005 (CET)

Ich habe die Erklärung des Begriffes "Programm" überarbeitet. Es ist nicht nur einfach eine unzutreffende Übersetzung aus dem englischen. Das englische Wort "program" (in der Alltagssprache) hat die gleiche Bedeutung wie im Deutschen, auch dort wird "mathematical programming" häufig missverstanden. Grothey 12:07, 12. Jan 2006 (CET)

Hallo Grothey, ich bin deiner Meinung. Das Lemma ist gut so, und Parameter sollten Variablen heißen. Da das Thema sehr umfangreich ist, bietet sich wahrscheinlich zu jedem Teilgebiet der Optimierung eine Zusammenfassung mit Link auf Spezialartikel an. Dieser Artikel sollte nur eine Übersicht geben. Insbesondere der Artikel Lineare Optimierung ist schon ein guter Anfang, um ihn zu einem lesenswerten Artikel auszubauen. -- Sdo 21:14, 16. Jan 2006 (CET) P.S.: Ich habe den Nutzen der Innere-Punkte-Verfahren im Text etwas eingeschränkt. Es kann sein, dass sie für bestimmte Probleme gut sind, aber zumindest zum Lösen linear-ganzzahliger Programme ist Branch-and-Bound in Verbindung mit dem Simplex-Verfahren immer noch ziemlich konkurrenzlos, weil dabei viele LPs gelöst werden müssen, die fast gleich aussehen. -- Sdo 21:18, 16. Jan 2006 (CET)

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -